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Context

e  We consider a cell in a given environment

e Its evolution in the gene expression space depends on its GRN

o Due to the stochastic nature of the underlying chemical reactions,
we observe variations between different cells
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Stochastic Two States Model

There is a simple existing stochastic model for the expression
of a gene in a single cell :

E(H) : 025 1,1 %% o
X'(t) = sE(t) — dX(t)

Figure: Two states model. Figure from U. Herbach

If kon and koff are both constant, and s = d, the stationary

distribution of such model is a Beta distribution of parameters
Kon  Koff
d’ d ).
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Stochastic Two States Model

e We put this model into a network :

o X=(X,..., X,) is now a vector in the gene expression space

® kon and kofr now depend on the global protein level

S kOn,i(X) = fl(X1l ctty Xl"l)
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Stochastic two states model

kon,i X ko 0
E(t) : 0 Koni®9, 4 4 fel

X! (t) = di(Ei(t) — Xi(t))
We denote : © € M(R") a n X n matrix characterizing the GRN

The effect of the GRN manifests itself through the function
kon = kon 0. Each © will generate different cellular behaviours
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Deterministic approximation

We consider that promoters switches are frequent in regard to
protein dynamics, and introduce a scaling factor ¢ :

on off

(kon koff) - (7 7)

scaling factor ~ noise coefficient

If € € 1, we can derive a deterministic limit :

X(t) = d (E(t) — X()) ~ X(t) =d | ————(X(1)) — X(t)

koff kon

= X(t) = F(X(1))
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Deterministic approximation
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Figure: Comparison between the mean trajectories from the PDMP and
the trajectories generated by the deterministic system for a signaling
pathway network : 1— 2 — 3
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Phase portrait for the toggle-switch
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Figure: Phase portrait of the deterministic approximation for a symmetric
toggle switch with strong inhibition
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Stochastic trajectory
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Figure: Example of a stochastic trajectory generated by the toggle switch
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Discrete representation

Metastability ~ Cellular type «— basins of attraction
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Figure: A cell in the gene expression space can always be associated to
one attractive basin (a). Simulating many cells, we can get the proportion .
of each basin in the process (b)



Transition between basin

When € < 1, the process spends in a basin a time long enough to
equilibrate inside:

= the hitting time of a new basin can be considered as a law
without memory

We build a new Markovian discrete process, continuous in time,
on the basins

= the transition probability between two basins Z; and Z; can be
approximated by an exponential law
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Exponential fitting
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Figure: Empirical distribution of the time passage between two basins in
normal and log scale
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Comparison between stationary distributions

PDMP model

E(t) : 0%, 4 4

X{(t) = di(Ei(t) — Xi(1))
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Comparison between stationary distributions
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Figure: Comparison between the stationary distribution of the coarse
grained model and the one deduced from the PDMP
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Phenomenological model

P Koft,i
E(8):0 kon,i(Xeqz(t)) 1 1_#.)0
Xi(t) = di(Ei(t) — Xi(1))

The approximate stationary distribution appears as a Beta mixture :

u~ Zuzl_lBeta( Off')

z€Z i=1

where k;, = kon,@,i(Xeq, Z) 15/40



Importance of the function k,,

o For a given network ©, we denote :
0o = (llz: (kz,-: koff,i)i=1,~~,n)zez

o We define the function kop,  :

> Hzkzj |_|?=1 Beta(kzi’ Kort,i) (x)

Kon,ae,j () = 22 =E(k, | X)
onaer > Mz I_l?=1 Beta(ky, koff,i)(x) s

z€Z

Theorem

The stationary distribution of the PDMP driven by the function

Kon,ae (X) is exactly the Beta mixture of parameters ag
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Transition

Figure: The tension of the string represents the chemical forces exerted by

the genes

18/40



Next step

® We have :
GRN — Coarse-grained model — Beta mixture
e Wewant:

Data — Beta mixture = GRN
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The problem of inference

Question : Given a set of data X and an empirical distribution uy,
we would like to find the © such that the stationary distribution of
the PDMP process ug is the closest from uy

=> We assume the non identifiability of the problem, as the
function © — ug itself is not injective.

Problem O : ug is not explicitly known
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The problem of inference

We denote : a = (uz, (ks koff,i)i=1,...,n)zez, the parameters
describing a beta mixture (associated to the PDMP)

New question : Given a Beta mixture fitting the data set X,
characterized by ap = a(X), what GRN could have generated it (in
a stationary way) ?

= Implicitly, we suppose that from a data set, we can not get
more information that the ones given by a Beta mixture
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The problem of inference

We denote Rg the risk minimized by the numerical procedure of
the first Section, defining ag from © (ideally, Ry would be a KL
divergence) :

ap =argminRe (O, a)
o

Reformulation : Given ag, we want to find O such that :

a0 = arg minRo (é,a)
o
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The problem of inference

Problem 1: We have no analytical link between ag and O, and it
would be time-consuming to use the previous numerical method
for computing the best ag

Problem 2 : It is difficult to know for a class of function k, ¢ if it

exists © such that ap = argminRg (é or)
o

For example, this is not the case for any ag for the sigmoid
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The problem of inference

New aim : find a risk R, accessible, such that :

6 =argminR(O, ao)
o

Problem 2bis : We could rather ask :

6 eargminRo (O, ao) quality condition
(C]

A

© =argminR(©, ag) stability condition
(€]
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The problem of inference

Stationary Data : uy
distributions PDMP

0

Beta Mixtures

a

A
Quality criteria

0(X)

A

Stability criteria

O(ag(x))
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Focus on the problem 1: find R

With kon @ and kon, o, we defined previously two PDMP systems
which have two close stationary distributions, ug and ugyg

= Could we build a risk R from the promoter frequency and not
from the stationary distribution ?

= Does it mean that kon, ¢ should be close than kop, o, for every x ?
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Importance of the function k,,

As the basins are deep when € < 1, the function kop, ¢4, are
supposed to be steep, and appear closed to Hill functions

Each kon g,i can be represented by a Hill function. Intuitively, if
the Hill function is sufficiently steep, it will be close on every point
of the gene expression space to the function kon, g,i

Example : the sigmoid

eﬁi+Z 0jiXj ’
kon,0,i(X) = k1,im
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Naive problem

A first option is then to consider the risk :

n
R(G), G) = Ex Z | kon,O,i(X) - kon,a,i(x) |

i=1

Then, from a data set X = (X, - - , X,_), we would compute a(X)
and then minimize the risk

RO, a(X)) =D > I kone,ilX) = kona(x,i(Xc) |

c=1 i=1
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WKB approximation

Now, we justify that this risk R indeed minimizes in a certain sens
the distance between the associated distributions, and derive a
new proposal.

We seek a distribution of the form :

V(x, t)

Ve, ue(x, t) = ge(x, t) exp (—

)
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WKB approximation

We make the following Taylor expansion at the second order with
respect to the scaling factor ¢ :

¢ =¢qo+ G+ o(€?)
V=Vy+ eV + o(e?)

Vo appears as the solution of an Hamilton-Jacobi equation :

Vo
Hy,, (x, DxVo(x)) + —t =0
d
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WKB approximation

We denote V|, the leading order term in € of a solution to the
stationary HJ equation for a certain k,,, function

We define a new risk :
_ d
R(O, o) = Ex (| Hee, 0 0% DxVie, . (X)) ) = [Q |~ 4a0 lo dX

Formally, this quantity measures how fast a PDMP process driven
by kon o is going to evolve when distributed initially by u,
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New proposal

For any O such that VVj o vanishes only on single points, we
show that :
R(©,a) =0 < Vi, o = Vig,q

= It measures how far is the quasipotential Vi, , from Vi ..

A large deviation analysis had shown the importance of the
quasipotential to describe the dynamics of the process :

Elias Ventre et al. “Reduction of a stochastic model of gene expression: Lagrangian dy-

namics gives acces to basins of attraction as cell types and metastability”. In: bioRziv
(2020).
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New proposal

As Vx, Hi,, (X, Pk,,, (X)) = O, we can show that :

n n
E(@, CX) <E Z | kon,or,i_ kon,G),i | +0 Z(kon,cx,i_ kon,@,i)z) )
i=1

i=1
= The previous naive proposal R(©, a) minimizes an upper

bound of R(O, a)

Intuitively, R is weaker than R : it allows more differences between
the ko, without making worst the difference between the stationary
distributions
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Analysis of the problem 2 : stability criteria

o We would like to verify that 6:

® = argminR(O, ag)
o

05
% 2.835 2.835
2.520 2.520
0.4
2.205 2205
1.890 03 1.890
1575 1575
1.260 02 1.260
0.945 0.945
0.630 o1 . 0.630
0315 i 0315
0.0
- 0.000 0.000
01 02 03 04 05 00 01 02 03 04 05

VaIueé ofl Hk é(}(, Pkona. ) | Cells concentrate where H is
on, on,ag A ]
on the gene expression space small : R(O, ag) is thensmall 4,



Analysis of the problem 2 : quality criteria

e We also would like to verify :
e arg@min Ro(O, ao)
This not accessible but we could consider that
Ro(©, ) = KL (ugq || ua)

and then verify that KL (uaé [| uao) is small
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Non-identifiability

e In simple cases as the toggle switch, we see clearly that the

problem is non identifiable : many © could lead to the same o
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Algorithm in practice

Given a set of data X = (X3, - -+ , X,), find an a(X) fitting the data

Compute :
6(X) = arg minR(O, a(X))
0

Find ag ) numerically.

Verify that the quality criteria KL (u"’é(x) [| Ua(x)) is small
and that the stability criteria ﬁ(é(x), O‘é(x)) is small too.
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Open questions

For which type of k., does it always exist, given any ag, a matrix
© such that ag=ag?

When this is the case, we would like to prove that the 6 given by
R verifies :

oo = Arg minRo(O, a)
o

When this is not the case, we need to quantify :

KL (uaé | uo,o)
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Work in progress

The full model includes mRNAs :

kOn kO
E(t) 1 0 —2 1,1 o,

M’(t) = soE(t) — doM(t),

P’(t) = s;M(t) — diP(t).
— Giving that the Hill function k,, is sufficiently steep, the mRNA
distribution is also well approximated by a Beta mixture

— We implement a specific RI-MCMC algorithm to infer a set of
parameters a from RNA-seq data

— We obtain a collection of © !
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To be continued...
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