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Context

• We consider a cell in a given environment
• Its evolution in the gene expression space depends on its GRN
• Due to the stochastic nature of the underlying chemical reactions,

we observe variations between different cells
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Stochastic Two States Model

•There is a simple existing stochastic model for the expression
of a gene in a single cell :

Figure: Two states model. Figure from U. Herbach

•If kon and koff are both constant, and s = d, the stationary
distribution of such model is a Beta distribution of parameters
( kond ,

koff
d ).
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Stochastic Two States Model

• We put this model into a network :

• X = (X1, ..., Xn) is now a vector in the gene expression space

• kon and koff now depend on the global protein level

=⇒ kon,i(X) = fi(X1, · · · , Xn)
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Stochastic two states model





Ei(t) : 0

kon,i(X)−−−→ 1, 1
koff,i−→ 0

X′i (t) = di(Ei(t) − Xi(t))

• We denote : Θ ∈M(Rn) a n× nmatrix characterizing the GRN

• The effect of the GRN manifests itself through the function
kon = kon,Θ. Each Θ will generate different cellular behaviours
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Deterministic approximation

• We consider that promoters switches are frequent in regard to
protein dynamics, and introduce a scaling factor ϵ :

(kon, koff)↔ ( k̃on
ϵ
,
k̃off
ϵ
)

• scaling factor ∼ noise coefficient
If ϵ≪ 1, we can derive a deterministic limit :

Ẋ(t) = d (E(t) − X(t)) ∼ Ẋ(t) = d
( kon
koff + kon

(X(t)) − X(t)
)

=⇒ Ẋ(t) = F(X(t))
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Deterministic approximation

Figure: Comparison between the mean trajectories from the PDMP and
the trajectories generated by the deterministic system for a signaling
pathway network : 1 −→ 2 −→ 3
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Phase portrait for the toggle-switch

Figure: Phase portrait of the deterministic approximation for a symmetric
toggle switch with strong inhibition
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Stochastic trajectory

Figure: Example of a stochastic trajectory generated by the toggle switch
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Discrete representation
• Metastability∼ Cellular type ↔ basins of attraction

(a) (b)

Figure: A cell in the gene expression space can always be associated to
one attractive basin (a). Simulating many cells, we can get the proportion
of each basin in the process (b)
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Transition between basin

• When ϵ≪ 1, the process spends in a basin a time long enough to
equilibrate inside:

=⇒ the hitting time of a new basin can be considered as a law
without memory

• We build a newMarkovian discrete process, continuous in time,
on the basins

=⇒ the transition probability between two basins Zi and Zj can be
approximated by an exponential law
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Exponential fitting

Figure: Empirical distribution of the time passage between two basins in
normal and log scale
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Comparison between stationary distributions
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Comparison between stationary distributions

Figure: Comparison between the stationary distribution of the coarse
grained model and the one deduced from the PDMP

14/40



Phenomenological model

The approximate stationary distribution appears as a Beta mixture :

u ∼∑
z∈Z

μz

n∏

i=1

Beta(
kzi
di
,
koff,i
i
),

where kzi = kon,Θ,i(Xeq, Z) 15/40



Importance of the function kon

• For a given network Θ, we denote :

αΘ =
(
μz, (kzi , koff,i)i=1,··· ,n

)
z∈Z

• We define the function kon,α :

kon,αΘ ,j(x) =

∑
z∈Z

μzkz,j
∏n

i=1 Beta(kzi , koff,i)(x)
∑
z∈Z

μz
∏n

i=1 Beta(kzi , koff,i)(x)
= E(kzj | X)

Theorem

The stationary distribution of the PDMP driven by the function
kon,αΘ(x) is exactly the Beta mixture of parameters αΘ

16/40



Transition

Figure: The Beta mixture is a mathematical representation of the
Waddington’s epigenetic landscape
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Transition

Figure: The tension of the string represents the chemical forces exerted by
the genes
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Next step

• We have :

GRN → Coarse-grained model → Beta mixture

• We want :

Data → Beta mixture → GRN
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The problem of inference

• Question : Given a set of data X and an empirical distribution uX,
we would like to find the Θ such that the stationary distribution of
the PDMP process uΘ is the closest from uX

=⇒ We assume the non identifiability of the problem, as the
function Θ→ uΘ itself is not injective.

• Problem 0 : uΘ is not explicitly known
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The problem of inference

• We denote : α =
(
μz, (kzi , koff,i)i=1,··· ,n

)
z∈Z, the parameters

describing a beta mixture (associated to the PDMP)

• New question : Given a Beta mixture fitting the data set X,
characterized by α0 = α(X), what GRN could have generated it (in
a stationary way) ?

=⇒ Implicitly, we suppose that from a data set, we can not get
more information that the ones given by a Beta mixture
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The problem of inference

• We denote R0 the risk minimized by the numerical procedure of
the first Section, defining αΘ from Θ (ideally, R0 would be a KL
divergence) :

αΘ = rgmin
α

R0 (Θ, α)

• Reformulation : Given α0, we want to find Θ̂ such that :

α0 = rgmin
α

R0
(
Θ̂, α

)

22/40



The problem of inference

• Problem 1 : We have no analytical link between αΘ and Θ, and it
would be time-consuming to use the previous numerical method
for computing the best αΘ

• Problem 2 : It is difficult to know for a class of function kon,Θ̂ if it

exists Θ̂ such that α0 = rgmin
α

R0
(
Θ̂, α

)

For example, this is not the case for any α0 for the sigmoid
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The problem of inference

• New aim : find a risk R, accessible, such that :

Θ̂ = rgmin
Θ

R(Θ, α0)

• Problem 2bis : We could rather ask :





Θ̂ ∈ rgmin
Θ

R0 (Θ, α0) quality condition

Θ̂ = rgmin
Θ

R(Θ, αΘ̂) stability condition
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The problem of inference
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Focus on the problem 1 : find R

• With kon,Θ and kon,α, we defined previously two PDMP systems
which have two close stationary distributions, uΘ and uαΘ

=⇒ Could we build a risk R from the promoter frequency and not
from the stationary distribution ?

=⇒ Does it mean that kon,θ should be close than kon,α0 for every x ?
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Importance of the function kon

• As the basins are deep when ϵ≪ 1, the function kon,αΘ ,i are
supposed to be steep, and appear closed to Hill functions

• Each kon,θ,i can be represented by a Hill function. Intuitively, if
the Hill function is sufficiently steep, it will be close on every point
of the gene expression space to the function kon,αΘ ,i

Example : the sigmoid

kon,Θ,i(X) = k1,i
eβi+

∑
θjiXj

1+ eβi+
∑

θjiXj
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Naive problem

• A first option is then to consider the risk :

R(Θ, α) = EX

( n∑

i=1

| kon,Θ,i(X) − kon,α,i(X) |
)

• Then, from a data set X = (X1, · · · , Xnc), we would compute α(X)
and then minimize the risk

R̂(Θ, α(X)) =
nc∑

c=1

n∑

i=1

| kon,Θ,i(Xc) − kon,α(X),i(Xc) |
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WKB approximation

Now, we justify that this risk R indeed minimizes in a certain sens
the distance between the associated distributions, and derive a
new proposal.

• We seek a distribution of the form :

∀e, ue(x, t) = ζe(x, t)exp
(− V(x, t)

ϵ

)
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WKB approximation

• Wemake the following Taylor expansion at the second order with
respect to the scaling factor ϵ :





ζ = ζ0 + ϵζ1 + o(ϵ2)

V = V0 + ϵV1 + o(ϵ2)

• V0 appears as the solution of an Hamilton-Jacobi equation :

Hkon(x,DxV0(x)) +
∂V0

∂t
= 0
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WKB approximation

• We denote Vkon the leading order term in ϵ of a solution to the
stationary HJ equation for a certain kon function

• We define a new risk :

R(Θ, α) = EX
(| Hkon,Θ(X,DXVkon,α(X)) |) =

∫

Ω
| ∂
∂t
uα(X) |0 dX

Formally, this quantity measures how fast a PDMP process driven
by kon,Θ is going to evolve when distributed initially by uα
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New proposal

• For any Θ such that ∇Vkon,Θ vanishes only on single points, we
show that :

R(Θ, α) = 0 ↔ Vkon,Θ = Vkon,α

=⇒ It measures how far is the quasipotential Vkon,Θ from Vkon,α .

• A large deviation analysis had shown the importance of the
quasipotential to describe the dynamics of the process :
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New proposal

• As ∀x, Hkon,α(x, pkon,α(x)) = 0, we can show that :

R(Θ, α) ≤ E

( n∑

i=1

| kon,α,i − kon,Θ,i | +O
( n∑

i=1

(kon,α,i − kon,Θ,i)2
))

=⇒ The previous naive proposal R(Θ, α)minimizes an upper
bound of R(Θ, α)

Intuitively, R is weaker than R : it allows more differences between
the kon without making worst the difference between the stationary
distributions
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Analysis of the problem 2 : stability criteria

• We would like to verify that Θ̂ :

Θ̂ = rgmin
Θ

R(Θ, αΘ̂)

Values of | Hkon,Θ̂(x, pkon,αΘ̂ (x)) |
on the gene expression space

Cells concentrate where H is
small : R(Θ̂, αΘ̂) is then small 34/40



Analysis of the problem 2 : quality criteria

• We also would like to verify :

Θ̂ ∈ rgmin
Θ

R0(Θ, α0)

This not accessible but we could consider that

R0(Θ, α) = KL
(
uαΘ || uα)

and then verify that KL
(
uαΘ̂ || uα0

)
is small
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Non-identifiability

• In simple cases as the toggle switch, we see clearly that the
problem is non identifiable : many Θ could lead to the same α

Example : Values of
the risk R for a two
genes network, by
varying 2 values of
theta, fixing the two
others
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Algorithm in practice

• Given a set of data X = (X1, · · · , Xnc), find an α(X) fitting the data

• Compute :
Θ̂(X) = rgmin

Θ
R̂(Θ, α(X))

• Find αΘ̂(X) numerically.

Verify that the quality criteria KL
(
uαΘ̂(X) || uα(X)

)
is small

and that the stability criteria R̂(Θ̂(X), αΘ̂(X)) is small too.
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Open questions

• For which type of kon does it always exist, given any α0, a matrix
Θ̂ such that αΘ̂ = α0 ?

• When this is the case, we would like to prove that the Θ̂ given by
R verifies :

α0 = rgmin
α

R0(Θ̂, α)

• When this is not the case, we need to quantify :

KL
(
uαΘ̂ || uα0

)

38/40



Work in progress

• The full model includes mRNAs :





E(t) : 0
kon(X)−−→ 1, 1

koff−→ 0,

M′(t) = s0E(t) − d0M(t),

P′(t) = s1M(t) − d1P(t).

−→ Giving that the Hill function kon is sufficiently steep, the mRNA
distribution is also well approximated by a Beta mixture

−→We implement a specific RJ-MCMC algorithm to infer a set of
parameters α from RNA-seq data

−→We obtain a collection of Θ !
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To be continued...
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