Meeting in Paris, 2019, October the 3rd

Meeting du 3 octobre 2019

Présents

Laurent Modolo, Franck Picard, Claire Gayral, Joon Kwon, Anthony Ozier-Lafontaine, Julien Chiquet, Stéphane Robin, Aymeric Stamm, Olivier Gandrillon, Filipo Santambrogio, Jean-Baptiste Alberge, François ?

Franck: RKHS and Maximum Mean Discrepancy

Franck donne quelques éléments sur les RKHS et le MMD (Gretton et al. (2012))

Julien: t-SNE probabiliste

  • Revue sur les motivations et origine de SNE (Hinton and Roweis (2003)) et t-SNE (Maaten and Hinton (2008))
  • Revue des Gaussian process latent variable models comme piste de version formulation probabiliste de t-SNE (Titsias and Lawrence (2010), Damianou, Titsias, and Lawrence (2016), Lawrence (2005))

Remarques

  • Franck: voir les versions probabilistes de la Kernel MDS pour faire le lien avec (t)-SNE
  • Aymeric, Olivier, Laurent: cf. uMAP comme alternative; t-SNE is dead

References

Damianou, Andreas C, Michalis K Titsias, and Neil D Lawrence. 2016. “Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes.” The Journal of Machine Learning Research 17 (1): 1425–86.

Gretton, Arthur, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. “A Kernel Two-Sample Test.” Journal of Machine Learning Research 13 (Mar): 723–73.

Hinton, Geoffrey E, and Sam T Roweis. 2003. “Stochastic Neighbor Embedding.” In Advances in Neural Information Processing Systems, 857–64.

Lawrence, Neil. 2005. “Probabilistic Non-Linear Principal Component Analysis with Gaussian Process Latent Variable Models.” Journal of Machine Learning Research 6 (Nov): 1783–1816.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. “Visualizing Data Using T-Sne.” Journal of Machine Learning Research 9 (Nov): 2579–2605.

Titsias, Michalis, and Neil D Lawrence. 2010. “Bayesian Gaussian Process Latent Variable Model.” In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 844–51.

ANR project 2019 - 2022

Related